Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization

نویسندگان

  • Yunong Zhang
  • Long Jin
  • Dongsheng Guo
  • Yonghua Yin
  • Yao Chou
چکیده

In order to achieve higher computational precision in approximating the first-order derivative and discretize more effectively the continuous-time Zhang neural network (ZNN), a Taylor-type numerical differentiation rule is proposed and investigated in this paper. This rule not only greatly remedies some intrinsic weaknesses of the backward and central numerical differentiation rules, but also overcomes the limitation of the Lagrange-type numerical differentiation rules in ZNN discretization. In addition, a formula is proposed to obtain the optimal step-length of the Taylor-type numerical differentiation rule. Moreover, based on the proposed numerical differentiation rule, the stability, convergence and residual error of the Taylor-type discrete-time ZNN (DTZNN) are analyzed. Numerical experimental results further substantiate the efficacy and advantages of the proposed Taylor-type numerical differentiation rule for first-order derivative approximation and ZNN discretization. © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas

In order to achieve higher computational precision in approximating the first-order derivative of the target point, the 1-step-ahead numerical differentiation formulas are presented. These formulas greatly remedy some intrinsic weaknesses of the backward numerical differentiation formulas, and overcome the limitation of the central numerical differentiation formulas. In addition, a group of for...

متن کامل

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation

Structure-preserving numerical schemes for a nonlinear parabolic fourthorder equation, modeling the electron transport in quantum semiconductors, with periodic boundary conditions are analyzed. First, a two-step backward differentiation formula (BDF) semi-discretization in time is investigated. The scheme preserves the nonnegativity of the solution, is entropy stable and dissipates a modified e...

متن کامل

Verification and Validation of Common Derivative Terms Approximation in Meshfree Numerical Scheme

In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are assessed by a posteriori method, which shows that the approximations...

متن کامل

NUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE

This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 273  شماره 

صفحات  -

تاریخ انتشار 2015